CHAPTER 7

SYMMETRICAL COMPONENTS AND REPRESENTATION OF
FAULTED NETWORKS

An unbalanced three-phase system can be resolved into three balanced systems in the
sinusoidal steady state. This method of resolving an unbalanced system into three balanced
phasor system has been proposed by C. L. Fortescue. This method is called resolving
symmetrical components of the original phasors or simply symmetrical components. In this
chapter we shall discuss symmetrical components transformation and then will present how
unbalanced components like Y- or A-connected loads, transformers, generators and
transmission lines can be resolved into symmetrical components. We can then combine all
these components together to form what are called sequence networks.

7.1 SYMMETRICAL COMPONENTS

A system of three unbalanced phasors can be resolved in the following three
symmetrical components:

e Positive Sequence: A balanced three-phase system with the same phase sequence as
the original sequence.

e Negative sequence: A balanced three-phase system with the opposite phase sequence
as the original sequence.

e Zero Sequence: Three phasors that are equal in magnitude and phase.

Fig. 7.1 depicts a set of three unbalanced phasors that are resolved into the three sequence
components mentioned above. In this the original set of three phasors are denoted by V,, V}
and V., while their positive, negative and zero sequence components are denoted by the
subscripts 1, 2 and 0 respectively. This implies that the positive, negative and zero sequence
components of phase-a are denoted by Vi, V,» and Vo respectively. Note that just like the
voltage phasors given in Fig. 7.1 we can also resolve three unbalanced current phasors into
three symmetrical components.

: Vi
v Ve 52

Vao Vo Vg

I/b bl 2
(a) (b) () (d)

Fig. 7.1 Representation of (a) an unbalanced network, its (b) positive sequence, (c) negative sequence and
(d) zero sequence.
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7.1.1 Symmetrical Component Transformation

Before we discuss the symmetrical component transformation, let us first define the a-
operator. This has been given in (1.34) and is reproduced below.

11200 1 <3
a :ejlzo =——+4 j —— 7'1
S+ (7.1)

Note that for the above operator the following relations hold

2400 1 \/g
PR -

B
at=e" =1 (7.2)
a4 :ej4800 :ej360°ej120° —a
@’ = e = /36 o120 _ 12 andsoon

Also note that we have

1+a+az:1_l+j£_l_j£:0 (7.3)
2 2 2

Using the a-operator we can write from Fig. 7.1 (b)

V,=aV, and V, =aV, (7.4)
Similarly from Fig. 7.1 (c) we get

V,=aV, and V., =a’V,, (7.5)
Finally from Fig. 7.1 (d) we get

Vo = VhO = Vco (7.6)

Vo 1 1 1]V,
V, :% 1 a a |V, (7.7)
V., 1 & a V.

Defining the vectors V012 and V. as

VuO Va
Vi ={Val Vae =|Vs
VaZ I/c
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we can write (7.4) as

Voo = CVoe (7.8)
where C is the symmetrical component transformation matrix and is given by
I 1 1
C= 1 1 a o (7.9)
3 2
1 a a

The original phasor components can also be obtained from the inverse symmetrical
component transformation, i.e.,

y

abc

= C_lVamz (7.10)

Inverting the matrix C given in (7.9) and combining with (7.10) we get

% N T S O Vo
V, =1 a a V., =C! V., (7.11)
V. 1l a & Vs Vs

From (7.11) we can write

V,=V,+V, +V, (7.12)
V}):Vao'*‘ana1+aV;2:Vbo+Vb1+th (7.13)
I/L'zl/a()—i_al/al—'_azl/zﬂ:l/co-i_l/cl—i_l/&z (7.14)

Finally, if we define a set of unbalanced current phasors as /. and their symmetrical
components as /012, we can then define

Ia012 = Clabc

7.15
Ly = Cillamz ( :

Example 7.1: Let us consider a set of balanced voltages given in per unit by
V,=10,V,=10£-120° and V, =1.0£120°
These imply
V,=a’ and V, =a

Then from (7.7) we get

Vo :%(1+a2+a)=0

a
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V

al

=%(1+a3 +a3)=1.0pu

Vaz:%(l+a4+a2):0

We then see that for a balanced system the zero and negative sequence voltages are zero.
Also the positive sequence voltage is the same as the original system, i.e.,

Va=V,V, =V, and V, =V,
AAA

Example 7.2: All the quantities given in this example are in per unit. Let us now
consider the following set of three unbalanced voltages

V,=1.0, V,=12£-110° and V. =0.9.£120°

If we resolve them using (7.4) we then have

Vo | 1 1 1 1.0 0.0465 + j0.1161 0.1250£ - 68.16°
V, =3 1 a a*|12£-110°|=| 1.0273+ 0.0695 |[=| 1.0296./3.87°
V., 1 & a| 09£20° —0.0738 + j0.0466 0.0873£147.72°

Therefore we have

V., =V, =V,=0.125/-68.16°
v, =1.0296/-116.13°, ¥, =1.0296./123.87°
V,, =0.0873.£267.72°, V., =0.0973.£27.72°

Furthermore note that

V.=V, ,+V,+V,=1.0
V,=V,+V,+V,,=1.22-110°
V.=V, ,+V,+V,=0.92120°

AAA
7.1.2 Real and Reactive Power
The three-phase power in the original unbalanced system is given by
P+ JOue =V Ao 4V Iy + VI =V I, (7.16)

where I” is the complex conjugate of the vector 1. Now from (7.10) and (7.15) we get

Pubc + anbc = VaJE)IZC_TC_l*IZOIZ (7 17)
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From (7.11) we get

c’'c™

Il
98)
S O =
S = O
— O O

Therefore from (7.17) we get
P+ JOu = 3(VaoI;0 + Vall; + Va2122) (7.18)

We then find that the complex power is three times the summation of the complex power of
the three phase sequences.

Example 7.3: Let us consider the voltages given in Example 7.2. Let us further
assume that these voltages are line-to-neutral voltages and they supply a balanced Y-
connected load whose per phase impedance is Zy = 0.2 + j0.8 per unit. Then the per unit
currents in the three phases are

I, = & =1.2127£-75.96° pu
ZY
Y o
I, =—>=1.4552/174.04° pu
Y
V.
I, =—%=1.0914244.04° pu
ZY

Then the real and reactive power consumed by the load is given by

P, =(1.0x1.2127 +1.2x1.4552 +0.9x1.0914)x cos(75.96°)
=0.9559 pu

0, =(1.0x1.2127 +1.2x1.4552 + 0.9 x1.0914)x sin(75.96°)
=3.8235pu

Now using the transformation (7.15) we get

1,] [-0.1229- j0.0889] [0.1516.—144.12°
I, |=| 03839-/1.1881 |=| 1.2486/-72.10° | pu

al

I,| | 0.0331+0.1005 0.1058£71.75°

From the results given in Example 7.2 and from the above values we can compute the zero
sequence complex power as

P+ jQ, =3V, I’y =0.0138+ j0.0552 pu

The positive sequence complex power is
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P+ jO, =3V, I, =09354+ j3.7415 pu
Finally the negative sequence complex power is
P+ jQ, =3V I ,=0.0067+ j0.0269 pu

Adding the three complex powers together we get the total complex power consumed by the
load as

Py +jOu. =B+ B +P)+j(Q,+ 0 +0,)=09559 + j3.8235 pu
AAA

7.1.3 Orthogonal Transformation

Instead of the transformation matrix given in (7.9), let us instead use the
transformation matrix

| 1 1 1
C=—7—|1 a d° 7.19)
NI (
1 a a
We then have
1 1 1
c =L 1 & a (7.20)

Note from (7.19) and (7.20) that C"' = (C”)*. We can therefore state C(C")* = I, where I is
(3x3) identity matrix. Therefore the transformation matrices given in (7.19) and (7.20) are
orthogonal. Now since

cTc=(c"fc=

S O
S = O
—_ o O

we can write from (7.17)
Pabc + anbc = VaOI;0 + VaIIZI + Va2I:2 (721)
We shall now discuss how different elements of a power system are represented in

terms of their sequence components. In fact we shall show that each element is represented
by three equivalent circuits, one for each symmetrical component sequence.
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7.2 SEQUENCE CIRCUITS FOR LOADS

In this section we shall construct sequence circuits for both Y and A-connected loads
separately.

7.2.1 Sequence Circuit for a Y-Connected Load

Consider the balanced Y-connected load that is shown in Fig. 7.2. The neutral point
(n) of the windings are grounded through an impedance Z,. The load in each phase is denoted
by Zy. Let us consider phase-a of the load. The voltage between line and ground is denoted by
V., the line-to-neutral voltage is denoted by V,, and voltage between the neutral and ground is
denoted by V. The neutral current is then

I,=1+1,+1,

7.22
:3]a0+(1al+Ibl+101)+(]a2+]h2+Ic2):3100 ( )

Therefore there will not be any positive or negative sequence current flowing out of the
neutral point.

Fig. 7.2 Schematic diagram of a balanced Y-connected load.
The voltage drop between the neutral and ground is

V=371, (7.23)
Now

V.=V, +V, =V, +3Z1, (7.24)

We can write similar expression for the other two phases. We can therefore write

Va Vﬂl’l Vn Ia 1
vV, =\, |+|V, |=2,| 1, |+3Z,1,,|1 (7.25)
Vol WVal LV, 1, 1

Pre-multiplying both sides of the above equation by the matrix C and using (7.8) we get
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1
Vi =2yl 0, +3Z,1,,C|1 (7.26)
1
Now since
1 1
Cl1(=|0
1 0
We get from (7.26)
I/a() [uO IaO
Viol=2,1,|+3Z, 0 (7.27)
I/uZ IaZ O

We then find that the zero, positive and negative sequence voltages only depend on their
respective sequence component currents. The sequence component equivalent circuits are
shown in Fig. 7.3. While the positive and negative sequence impedances are both equal to Zy,
the zero sequence impedance is equal to

Z,=7Z,+3Z, (7.28)
If the neutral is grounded directly (i.e., Z, = 0), then Z, = Zy. On the other hand, if the neutral

is kept floating (i.e., Z, = ), then there will not be any zero sequence current flowing in the
circuit at all.

Im I al L(O
g n —— | Z} I 4] iy | Z)’ | [
Vul VaO 3Zn

Fig. 7.3 Sequence circuits of Y-connected load: (a) positive, (b) negative and (c) zero sequence.
7.2.2 Sequence Circuit for a A-Connected Load

Consider the balanced A-connected load shown in Fig. 7.4 in which the load in each
phase is denoted by Z,. The line-to-line voltages are given by

V=21,
V,.=Z,, (7.29)
I/L'u = ZAIL‘a

Adding these three voltages we get
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Fig. 7.4 Schematic diagram of a balanced A-connected load.
Vab+l/bc+VcaZZA(Iab+Ibc+Ica) (730)

Denoting the zero sequence component V,, Vi and V., as V,p and that of 7,5, I and 1., as
1,50 we can rewrite (7.30) as

Vavo = Z s upo (7.31)
Again since
Vs *Voe tVea =V =V, +V, =V + V. =V, =0

we find from (7.31) Vapo = Lipo = 0. Hence a A-connected load with no mutual coupling has
not any zero sequence circulating current. Note that the positive and negative sequence
impedance for this load will be equal to Z,.

Example 7.4: Consider the circuit shown in Fig. 7.5 in which a A-connected load is
connected in parallel with a Y-connected load. The neutral point of the Y-connected load is
grounded through an impedance. Applying Kirchoff’s current law at the point P in the circuit
we get

_Va_Vb+Vu_I/c+I/(1_Vn

]a
ZA ZA ZY
| F )2
ZA ZY ZA ZY

The above expression can be written in terms of the vector V. as

S ERE AT

V
Zy Ly Zy Zy

Since the load is balanced we can write

1 11 1
Iubc = {i + L]Vabc 1 1 1 Vabc - L 1
ZA ZY A 1 1 1 ZY 1
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[/ al
e

Fig. 7.5 Parallel connection of balanced A and Y-connected loads.

Pre-multiplying both sides of the above expression by the transformation matrix C we get

1 11 1
Loz =[i+LJVa012_LC 11 CilVamz_ﬂC 1
ZA ZY ZA 1 1 1 ZY 1
Now since
1 11 300
Cl1 1 1|c"'=|0 0 0
1 11 0 0 O
we get

:(_+_)Vﬂ

L= LVao - 1 v,
ZY ZY
Suppose now if we convert the A-connected load into an equivalent Y, then the
composite load will be a parallel combination of two Y-connected circuits — one with an
impedance of Zy and the other with an impedance of Z,/3. Therefore the positive and the
negative sequence impedances are given by the parallel combination of these two
impedances. The positive and negative sequence impedance is then given by
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ZyZ,/3
Z,+Z,/3
Now refer to Fig. 7.5. The voltage V,, is given by
V.=Z,(Ly+1,,+1,)=3Z,1,,
From Fig. 7.5 we can also write I, = I,p + I,y. Therefore

I+, +1 =1,+1,+1,+1,+1,+1,

=IabA _[caA +1bcA _IabA +[caA _IbcA +[aY +[bY +1cY

This implies that 7,0 = I,yo and hence V, = 3Z,1,0. We can then rewrite the zero sequence
current expression as

IaO = Z VHO
y+3Z,

It can be seen that the Z, term is absent from the zero sequence impedance.
AAA

7.3 SEQUENCE CIRCUITS FOR SYNCHRONOUS GENERATOR
The three-phase equivalent circuit of a synchronous generator is shown in Fig. 1.16. This is
redrawn in Fig. 7.6 with the neutral point grounded through a reactor with impedance Z,. The

neutral current is then given by

I =1 +1,+1, (7.32)

Fig. 7.6 Equivalent circuit of a synchronous generator with grounded neutral.
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The derivation of Section 1.3 assumes balanced operation which implies I, + I, + I. = 0. As
per (7.32) this assumption is not valid any more. Therefore with respect to this figure we can
write for phase-a voltage as

I/an = _(R+ijY)]a +jwM§'(]/7 +IC)+E0'I

7.33
=R+ joL +joM),+ joM(I,+1,+1)+E, (7.33)

Similar expressions can also be written for the other two phases. We therefore have

1 1

~
by

I/un a 1 1 a an
Voo l==[R+jo(L,+M)| I, |+ joM |1 1 1|1, |+|E, (7.34)
v I 11 1|2 |E,

Pre-multiplying both sides of (7.34) by the transformation matrix C we get

Vsz IaO 1 1 1 Iu() Ean()
Voil==R+ jo(L, +M)| I, |+joMC|1 1 1|C| I, |+|E,, (7.35)
VanZ [aZ 1 1 1 IaZ EanZ

Since the synchronous generator is operated to supply only balanced voltages we can assume
that E£,,0 = E,2 = 0 and E,,;; = E,,. We can therefore modify (7.35) as

V(mO IaO 3 0 O Ia() O
Vi |l=—[R+jo(L,+M,)| I, |+ joM |0 0 0|1, |+|E, (7.36)
Voo I, 0 0 0}7, 0
We can separate the terms of (7.36) as
VunO = _[R + ]a) (Ls - 2M5 )]IaO = _ZgOIaO (737)
I/unl = _[R + ]a)(Ls + Ms )]Ial + Ean = Ean - leal (738)
Vsz = _[R + ]a) (Ls + Ms )]]aZ = _ZZIaZ (739)

Furthermore we have seen for a Y-connected load that V,; = Va1, Va2 = Vae since the neutral
current does not affect these voltages. However V0 = Vo + V,. Also we know that
V,=—3Z,l.,0. We can therefore rewrite (7.37) as

I/aO = _(Zg() + 3Zn )'IHO = _ZOIa0 (740)

The sequence diagrams for a synchronous generator are shown in Fig. 7.7.
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Fig. 7.7 Sequence circuits of synchronous generator: (a) positive, (b) negative and (c) zero sequence.
7.4 SEQUENCE CIRCUITS FOR SYMMETRICAL TRANSMISSION LINE

The schematic diagram of a transmission line is shown in Fig. 7.8. In this diagram the
self impedance of the three phases are denoted by Z,,, Zy, and Z, while that of the neutral

wire is denoted by Z,,. Let us assume that the self impedances of the conductors to be the
same, i.e.,

Z,=2,=2

Since the transmission line is assumed to be symmetric, we further assume that the mutual

inductances between the conductors are the same and so are the mutual inductances between
the conductors and the neutral, i.e.,

Zab :th :Z

ca

Zan :an :Z

cn

The directions of the currents flowing through the lines are indicated in Fig. 7.8 and the
voltages between the different conductors are as indicated.

a b, —— a
k I ad I
I ’
b 1 b
L g 1 Zpp I o
29 Vn
1, '

V| o o—2{ 7o | . Vi
Vc‘n V""“"
TS e 4
- I nn I -

Fig. 7.8 Lumped parameter representation of a symmetrical transmission line.

Applying Kirchoff’s voltage law we get

I/an = Vaa' + Va’n' + V:z’n = I/aa’ + I/a'rl’ - I/nn’ (741)
Again

I/aa' = Zaala + Zab (Ib + Ic)+ Zanln (742)

I/nn' = Znnla + Zan (la + [b + [L) (743)
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Substituting (7.42) and (7.43) in (7.41) we get

4 _V":(Z _Zan)Ia+(Zab_Zan)(Ib+Ic)+(Zan_Znn)In (744)

an an aa

Since the neutral provides a return path for the currents /,, I, and /., we can write
I=—I,+1,+1) (7.45)
Therefore substituting (7.45) in (7.44) we get the following equation for phase-a of the circuit

V - I/a'n' = (Zaa + Znn - 2Zan )Ia + (Zah + Znn - 2Zan )(Ih + Ic) (746)

Denoting

Z =2, +7Z, -2Z and Z, =Z,+Z, —27

(7.46) can be rewritten as

I/un - V = Zs[a + Zm (Ib + [L) (747)

'
an

Since (7.47) does not explicitly include the neutral conductor we can define the
voltage drop across the phase-a conductor as

I/ua' = I/an - I/u’n’ (748)
Combining (7.47) and (7.48) we get
Vaa’ :Zs[a+an(1b+Ic) (749)

Similar expression can also be written for the other two phases. We therefore get

I/aa’ Zs Zm Zm a
I/bb' = Zm Zs Zm b (750)
I/cc’ Zm Zm Zs c
Pre-multiplying both sides of (7.50) by the transformation matrix C we get
Z.Y Zm Zm
Vua’OlZ =C Zm Zs Zm Cil[aOlZ (751)
Zm Zm ZS'

Now
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z, 7, Z, z, zZ, Z,J1 1 1
zZ 6 Z z |\cC'=\Z, 6 Z Z |1 & a
zZ Z Z, Z Z Z |1 a &
Z,+2Z, Z,-Z, zZ,-Z,

=|Z +2Z, a’Z, 4(1+a)zm aZ, +(1+a2)zm
z.+27, az +(+a’)z, @’z +(+a)z,

Hence
zZ Z Z, 11 1]z +2z, Z-Z, Z -7,
clz z z |c :% 1 a a|2,+2Z, &z +(+a)z, az +(+d’)z,
zZ Z, Z. 1 & a|z+22, az,+(+d’)z, @7, +(1+a)z,
(37, +67, 0 0
:% 0 3z-3Z, 0
0 0 3z2.-3Z,

Therefore from (7.51) we get

I/au'O Zs + 2Zm IaO
aa'l | = Zs - Zm al (752)
Vaa’Z Zx - Zm 1112

The positive, negative and zero sequence equivalent circuits of the transmission line
are shown in Fig. 7.9 where the sequence impedances are

Zl :ZZ :Zs _Zm =Zua _Zub
Zy=2Z 4272 =7Z,,+2Z,+3Z —6Z,

n

I({I I, /
al al)
i ST B
Van IY TVUW 1 VmﬂT YV(‘-'“' 2 VunOT ‘Vu w0
?’l—n’ }‘I—?’l' ?I—n’

(a) (b) (c)

Fig. 7.9 Sequence circuits of symmetrical transmission line: (a) positive, (b) negative and (c) zero sequence.
7.5 SEQUENCE CIRCUITS FOR TRANSFORMERS

In this section we shall discuss the sequence circuits of transformers. As we have seen
earlier that the sequence circuits are different for Y- and A-connected loads, the sequence
circuits are also different for Y and A connected transformers. We shall therefore treat
different transformer connections separately.
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7.5.1 Y-Y Connected Transformer

Fig. 7.10 shows the schematic diagram of a Y-Y connected transformer in which both
the neutrals are grounded. The primary and secondary side quantities are denoted by
subscripts in uppercase letters and lowercase letters respectively. The turns ratio of the
transformer is given by a = N;:N,.

Fig. 7.10 Schematic diagram of a grounded neutral Y-Y connected transformer.

The voltage of phase-a of the primary side is
V,=V+Vy=V,+3Z,1,

Expanding V4 and Vv in terms of their positive, negative and zero sequence components, the
above equation can be rewritten as

Vio ¥ Vaa # Vo =Vino + Vi +Vana +3Zy1 4 (7.53)

Noting that the direction of the neutral current 7, is opposite to that of 7y, we can write an
equation similar to that of (7.53) for the secondary side as

VotV ,+V,=V +V  +V 371

an0 anl an2 n” a0

(7.54)

Now since the turns ratio of the transformer is &= N;:N, we can write

o Vv Ly Vo
N, V

an

NI,=N,I,=1,=al,

Substituting in (7.54) we get
1
Vit Va+V,= E(VANO Vo + VANZ)_ 32, 4

Multiplying both sides of the above equation by « results in

a(I/aO +V,+ VaZ) =Vivo * Va1 ¥V — 3Zna21A0 (7.55)
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Finally combining (7.53) with (7.55) we get
a(Vao +V+ Vaz): Vio ¥ Vi Vi = 3(ZN + Zna2)1A0 (7.56)

Separating out the positive, negative and zero sequence components we can write

av, = %Vul =V, (7.57)
2
av, = %K{Z =V (7.58)
2
N,
av,, :V]I/ao :VA0_3[ZN +(N1/N2)zzn]le (7.59)
2
Lo Z RYAY 3¢ Zy Ip
—1 1 —
e o
V,qo Vm)
NNy

Fig. 7.11 Zero sequence equivalent circuit of grounded neutral Y-Y connected transformer.

From (7.57) and (7.58) we see that the positive and negative sequence relations are the same
as that we have used for representing transformer circuits given in Fig. 1.18. Hence the
positive and negative sequence impedances are the same as the transformer leakage
impedance Z. The zero sequence equivalent circuit is shown in Fig. 7.11. The total zero
sequence impedance is given by

Z,=7Z+3Z,+3(N,/N,) Z, (7.60)

The zero sequence diagram of the grounded neutral Y-Y connected transformer is
shown in Fig. 7.12 (a) in which the impedance Z; is as given in (7.60). If both the neutrals are
solidly grounded, i.e., Z, = Zy = 0, then Z is equal to Z. The single line diagram is still the
same as that shown in Fig. 7.12 (a). If however one of the two neutrals or both neutrals are
ungrounded, then we have either Z, = o or Zy = o or both. The zero sequence diagram is then
as shown in Fig. 7.12 (b) where the value of Z;, will depend on which neutral is kept
ungrounded.

Z() ZO
-3 —___F— ——

(a) (b)

Fig. 7.12 Zero sequence diagram of (a) grounded neutral and (b) ungrounded neutral Y-Y connected
transformer.



3.29

7.5.2 A-A Connected Transformer

The schematic diagram of a A-A connected transformer is shown in Fig. 7.13. Now
we have

V.=V, =V
4B 47 VB (7.61)
=V ¥ Vi vV =Vao =V =Viy = Vg +Voips
Again
N
V,=—V, =aV
AB N2 ab ab
1,
—
a
N| :Ng
J
(J
Cv —- ﬁb
2’ ._(m) ] | .(m) [( b
B —* ¢
Fig. 7.13 Schematic diagram of a A-A connected transformer.
Therefore from (7.61) we get
Vig =Vt +Vipo = a(Vabl + Vabz) (7.62)

The sequence components of the line-to-line voltage V45 can be written in terms of
the sequence components of the line-to-neutral voltage as

Vg1 =3V 3y £30° (7.63)
V i5r = N3V jyad —30° (7.64)

Therefore combining (7.62)-(7.64) we get

TV 1, 2300+ 3V, 2 = 30° = a3V, 2300 + 3V, 2 — 30°) (7.65)

Hence we get

Vin=aV,, and V., =aV, (7.66)

an2
Thus the positive and negative sequence equivalent circuits are represented by a series
impedance that is equal to the leakage impedance of the transformer. Since the A-connected
winding does not provide any path for the zero sequence current to flow we have

l,=1,=0

a
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However the zero sequence current can sometimes circulate within the A windings. We can
then draw the zero sequence equivalent circuit as shown in Fig. 7.14.

Zy

Fig. 7.14 Zero sequence diagram of A-A connected transformer.
7.5.3 Y-A Connected Transformer

The schematic diagram of a Y-A connected transformer is shown in Fig. 7.15. It is
assumed that the Y-connected side is grounded with the impedance Zy. Even though the zero
sequence current in the primary Y-connected side has a path to the ground, the zero sequence
current flowing in the A-connected secondary winding has no path to flow in the line. Hence
we have 7,0 = 0. However the circulating zero sequence current in the A winding magnetically
balances the zero sequence current of the primary winding.

14
A—P
Iy
S
a
JV]:NE
L/
(d
b,
| ) I_ "
—

Fig. 7.15 Schematic diagram of a Y-A connected transformer.

The voltage in phase-a of both sides of the transformer is related by

N,
Vi =—2V, =aV,
AN N2 ab ab
Also we know that
V,=V.xy+Vy

We therefore have

VAO + VAI + VAZ = VANO + VANI + VANZ + 3ZNIA0

(7.67)
= a(Vubo AV + Vub2)+ 3Z\1 4

Separating zero, positive and negative sequence components we can write
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Vi=3Zy =V, =0 (7.68)
V, =aV, =3aV,£30° (7.69)
V,=aV,,=3aV,,/—30° (7.70)

The positive sequence equivalent circuit is shown in Fig. 7.16 (a). The negative sequence
circuit is the same as that of the positive sequence circuit except for the phase shift in the
induced emf. This is shown in Fig. 7.16 (b). The zero sequence equivalent circuit is shown in
Fig. 7.16 (c) where Zy = Z + 3Zy. Note that the primary and the secondary sides are not
connected and hence there is an open circuit between them. However since the zero sequence
current flows through primary windings, a return path is provided through the ground. If
however, the neutral in the primary side is not grounded, i.e., Zy = oo, then the zero sequence
current cannot flow in the primary side as well. The sequence diagram is then as shown in
Fig. 7.16 (d) where Z, = Z.
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Fig. 7.16 Sequence diagram of a Y-A connected transformer: (a) positive sequence, (b) negative sequence, (c)
zero sequence with grounded Y-connection and (d) zero sequence with ungrounded Y-connection.

7.6 SEQUENCE NETWORKS

The sequence circuits developed in the previous sections are combined to form the
sequence networks. The sequence networks for the positive, negative and zero sequences are
formed separately by combining the sequence circuits of all the individual elements. Certain
assumptions are made while forming the sequence networks. These are listed below.

1. Apart from synchronous machines, the network is made of static elements.

The voltage drop caused by the current in a particular sequence depends only on the
impedance of that part of the network.

3. The positive and negative sequence impedances are equal for all static circuit
components, while the zero sequence component need not be the same as them.
Furthermore subtransient positive and negative sequence impedances of a synchronous
machine are equal.

4. Voltage sources are connected to the positive sequence circuits of the rotating machines.

5. No positive or negative sequence current flows between neutral and ground.
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Example 7.5: Let us consider the network shown in Fig 7.17 which is essentially the
same as that discussed in Example 1.2. The values of the various reactances are not important
here and hence are not given in this figure. However various points of the circuit are denoted
by the letters 4 to G. This has been done to identify the impedances of various circuit
elements. For example, the leakage reactance of the transformer 7 is placed between the
points 4 and B and that of transformer 75 is placed between D and E.

The positive sequence network is shown in Fig. 7.18. This is essentially same as that
shown in Fig. 1.24. The negative sequence diagram, shown in Fig. 7.19, is almost identical to
the positive sequence diagram except that the voltage sources are absent in this circuit. The
zero sequence network is shown in Fig. 7.20. The neutral point of generator G, is grounded.
Hence a path from point 4 to the ground is provided through the zero sequence reactance of
the generator. The primary side of the transformer 7; is A-connected and hence there is
discontinuity in the circuit after point 4. Similar connections are also made for generator G,
and transformer 7. The transmission line impedances are placed between the points B—C,
C—D and C—F. The secondary side of transformer 73 is ungrounded and hence there is a break
in the circuit after the point F. However the primary side of 75 is grounded and so is the
neutral point of generator G;. Hence the zero sequence components of these two apparatus
are connected to the ground.
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Fig. 7.18 Positive sequence network of the power system of Fig. 7.17.
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Fig. 7.19 Negative sequence network of the power system of Fig. 7.17.

B (T00) e (T00)
€

4 E
2 G

Fig. 7.20 Zero sequence network of the power system of Fig. 7.17.
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