
CHAPTER 7 
 

SYMMETRICAL COMPONENTS AND REPRESENTATION OF 
FAULTED NETWORKS 

 
 

An unbalanced three-phase system can be resolved into three balanced systems in the 
sinusoidal steady state. This method of resolving an unbalanced system into three balanced 
phasor system has been proposed by C. L. Fortescue. This method is called resolving 
symmetrical components of the original phasors or simply symmetrical components. In this 
chapter we shall discuss symmetrical components transformation and then will present how 
unbalanced components like Y- or ∆-connected loads, transformers, generators and 
transmission lines can be resolved into symmetrical components. We can then combine all 
these components together to form what are called sequence networks. 
 

7.1 SYMMETRICAL COMPONENTS 
 

A system of three unbalanced phasors can be resolved in the following three 
symmetrical components: 
 

• Positive Sequence: A balanced three-phase system with the same phase sequence as 
the original sequence. 

• Negative sequence: A balanced three-phase system with the opposite phase sequence 
as the original sequence. 

• Zero Sequence: Three phasors that are equal in magnitude and phase. 
 
Fig. 7.1 depicts a set of three unbalanced phasors that are resolved into the three sequence 
components mentioned above. In this the original set of three phasors are denoted by Va, Vb 
and Vc, while their positive, negative and zero sequence components are denoted by the 
subscripts 1, 2 and 0 respectively. This implies that the positive, negative and zero sequence 
components of phase-a are denoted by Va1, Va2 and Va0 respectively. Note that just like the 
voltage phasors given in Fig. 7.1 we can also resolve three unbalanced current phasors into 
three symmetrical components. 
 

 
 

Fig. 7.1 Representation of (a) an unbalanced network, its (b) positive sequence, (c) negative sequence and       
(d) zero sequence. 
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7.1.1 Symmetrical Component Transformation 
 

Before we discuss the symmetrical component transformation, let us first define the a-
operator. This has been given in (1.34) and is reproduced below. 
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Note that for the above operator the following relations hold 
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Also note that we have  
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Using the a-operator we can write from Fig. 7.1 (b) 
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1   and  acab aVVVaV ==                  (7.4) 

 
Similarly from Fig. 7.1 (c) we get 
 

2
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222   and  acab VaVaVV ==                  (7.5) 
 
Finally from Fig. 7.1 (d) we get 
 

000 cba VVV ==                    (7.6) 
 

The symmetrical component transformation matrix is then given by 
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Defining the vectors Va012 and Vabc as 
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we can write (7.4) as 
 

abca CVV =012                    (7.8) 
 
where C is the symmetrical component transformation matrix and is given by 
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The original phasor components can also be obtained from the inverse symmetrical 

component transformation, i.e., 
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Inverting the matrix C given in (7.9) and combining with (7.10) we get 
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From (7.11) we can write 
 

210 aaaa VVVV ++=                 (7.12) 

21021
2

0 bbbaaab VVVaVVaVV ++=++=              (7.13) 
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10 cccaaac VVVVaaVVV ++=++=              (7.14) 
 

Finally, if we define a set of unbalanced current phasors as Iabc and their symmetrical 
components as Ia012, we can then define 
 

012
1

012

aabc

abca

ICI

CII
−=

=
                 (7.15) 

 
Example 7.1: Let us consider a set of balanced voltages given in per unit by 

 
°∠=°−∠== 1200.1  and  1200.1  ,0.1 cba VVV  

 
These imply 
 

aVaV cb ==   and  2  
 
Then from (7.7) we get 
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( ) pu 0.11
3
1 33

1 =++= aaVa  

( ) 01
3
1 24

2 =++= aaVa  

 
We then see that for a balanced system the zero and negative sequence voltages are zero. 
Also the positive sequence voltage is the same as the original system, i.e., 
 

ccbbaa VVVVVV === 111   and  ,  
∆∆∆ 

 
Example 7.2: All the quantities given in this example are in per unit. Let us now 

consider the following set of three unbalanced voltages  
 

°∠=°−∠== 1209.0  and  1102.1  ,0.1 cba VVV  
 
If we resolve them using (7.4) we then have 
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Therefore we have 
 

°−∠=== 16.68125.0000 cba VVV  
°∠=°−∠= 87.1230296.1,13.1160296.1 11 cb VV  

°∠=°∠= 72.270973.0,72.2670873.0 22 cb VV  
 
Furthermore note that 
 

0.1210 =++= aaaa VVVV  
°−∠=++= 1102.1210 bbbb VVVV  

°∠=++= 1209.0210 cccc VVVV  
∆∆∆ 

 
7.1.2 Real and Reactive Power 
 

The three-phase power in the original unbalanced system is given by 
 

∗=++=+ abc
T

abcccbbaaabcabc IVIVIVIVjQP ***              (7.16) 
 
where I∗ is the complex conjugate of the vector I. Now from (7.10) and (7.15) we get 
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From (7.11) we get 
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Therefore from (7.17) we get 
 

( )∗∗∗ ++=+ 2211003 aaaaaaabcabc IVIVIVjQP              (7.18) 
 
We then find that the complex power is three times the summation of the complex power of 
the three phase sequences. 
 

Example 7.3: Let us consider the voltages given in Example 7.2. Let us further 
assume that these voltages are line-to-neutral voltages and they supply a balanced Y-
connected load whose per phase impedance is ZY = 0.2 + j0.8 per unit. Then the per unit 
currents in the three phases are 
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Then the real and reactive power consumed by the load is given by 
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Now using the transformation (7.15) we get 
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From the results given in Example 7.2 and from the above values we can compute the zero 
sequence complex power as 
 

0552.00138.03 0000 jIVjQP aa +==+ ∗   pu 
 
The positive sequence complex power is 
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7415.39354.03 1111 jIVjQP aa +==+ ∗   pu 
 
Finally the negative sequence complex power is 
 

0269.00067.03 2222 jIVjQP aa +==+ ∗   pu 
 
Adding the three complex powers together we get the total complex power consumed by the 
load as 
 

( ) ( ) 8235.39559.0210210 jQQQjPPPjQP abcabc +=+++++=+   pu 
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7.1.3 Orthogonal Transformation 
 

Instead of the transformation matrix given in (7.9), let us instead use the 
transformation matrix 
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We then have 
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Note from (7.19) and (7.20) that C−1 = (CT)∗. We can therefore state C(CT)∗ = I3, where I3 is 
(3×3) identity matrix. Therefore the transformation matrices given in (7.19) and (7.20) are 
orthogonal. Now since 
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we can write from (7.17) 
 

∗∗∗ ++=+ 221100 aaaaaaabcabc IVIVIVjQP               (7.21) 
 

We shall now discuss how different elements of a power system are represented in 
terms of their sequence components. In fact we shall show that each element is represented 
by three equivalent circuits, one for each symmetrical component sequence. 
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7.2 SEQUENCE CIRCUITS FOR LOADS 
 

In this section we shall construct sequence circuits for both Y and ∆-connected loads 
separately. 
 
7.2.1 Sequence Circuit for a Y-Connected Load 
 

Consider the balanced Y-connected load that is shown in Fig. 7.2. The neutral point 
(n) of the windings are grounded through an impedance Zn. The load in each phase is denoted 
by ZY. Let us consider phase-a of the load. The voltage between line and ground is denoted by 
Va, the line-to-neutral voltage is denoted by Van and voltage between the neutral and ground is 
denoted by Vn. The neutral current is then 
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Therefore there will not be any positive or negative sequence current flowing out of the 
neutral point. 
 

 
 

Fig. 7.2 Schematic diagram of a balanced Y-connected load. 
 

The voltage drop between the neutral and ground is 
 

03 ann IZV =                  (7.23) 
 
Now 
 

03 anannana IZVVVV +=+=                (7.24) 
 
We can write similar expression for the other two phases. We can therefore write 
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Pre-multiplying both sides of the above equation by the matrix C and using (7.8) we get 
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Now since 
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We get from (7.26) 
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We then find that the zero, positive and negative sequence voltages only depend on their 
respective sequence component currents. The sequence component equivalent circuits are 
shown in Fig. 7.3. While the positive and negative sequence impedances are both equal to ZY, 
the zero sequence impedance is equal to 
 

nY ZZZ 30 +=                  (7.28) 
 
If the neutral is grounded directly (i.e., Zn = 0), then Z0 = ZY. On the other hand, if the neutral 
is kept floating (i.e., Zn = ∞), then there will not be any zero sequence current flowing in the 
circuit at all. 
 

 
 

Fig. 7.3 Sequence circuits of Y-connected load: (a) positive, (b) negative and (c) zero sequence. 
 
7.2.2 Sequence Circuit for a ∆-Connected Load 
 

Consider the balanced ∆-connected load shown in Fig. 7.4 in which the load in each 
phase is denoted by Z∆. The line-to-line voltages are given by 
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Adding these three voltages we get 
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Fig. 7.4 Schematic diagram of a balanced ∆-connected load. 
 

( )cabcabcabcab IIIZVVV ++=++ ∆               (7.30) 
 
Denoting the zero sequence component Vab, Vbc and Vca as Vab0 and that of Iab, Ibc and Ica as 
Iab0 we can rewrite (7.30) as 
 

00 abab IZV ∆=                  (7.31) 
 
Again since 
 

0=−+−+−=++ accbbacabcab VVVVVVVVV  
 
we find from (7.31) Vab0 = Iab0 = 0. Hence a ∆-connected load with no mutual coupling has 
not any zero sequence circulating current. Note that the positive and negative sequence 
impedance for this load will be equal to Z∆. 
 

Example 7.4: Consider the circuit shown in Fig. 7.5 in which a ∆-connected load is 
connected in parallel with a Y-connected load. The neutral point of the Y-connected load is 
grounded through an impedance. Applying Kirchoff’s current law at the point P in the circuit 
we get 
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The above expression can be written in terms of the vector Vabc as 
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Since the load is balanced we can write 
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Fig. 7.5 Parallel connection of balanced ∆ and Y-connected loads. 
 
Pre-multiplying both sides of the above expression by the transformation matrix C we get 
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Now since 
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we get 
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Separating the three components, we can write from the above equation 
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Suppose now if we convert the ∆-connected load into an equivalent Y, then the 

composite load will be a parallel combination of two Y-connected circuits − one with an 
impedance of ZY and the other with an impedance of Z∆/3. Therefore the positive and the 
negative sequence impedances are given by the parallel combination of these two 
impedances. The positive and negative sequence impedance is then given by 
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Now refer to Fig. 7.5. The voltage Vn is given by 
 

( ) 03 aYncYbYaYnn IZIIIZV =++=  
 
From Fig. 7.5 we can also write Ia = Ia∆ + IaY. Therefore 
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This implies that Ia0 = IaY0 and hence Vn = 3ZnIa0. We can then rewrite the zero sequence 
current expression as 
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It can be seen that the Z∆ term is absent from the zero sequence impedance. 
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7.3 SEQUENCE CIRCUITS FOR SYNCHRONOUS GENERATOR 
 
The three-phase equivalent circuit of a synchronous generator is shown in Fig. 1.16. This is 
redrawn in Fig. 7.6 with the neutral point grounded through a reactor with impedance Zn. The 
neutral current is then given by 
 

cban IIII ++=                 (7.32) 
 

 
 

Fig. 7.6 Equivalent circuit of a synchronous generator with grounded neutral. 
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The derivation of Section 1.3 assumes balanced operation which implies Ia + Ib + Ic = 0. As 
per (7.32) this assumption is not valid any more. Therefore with respect to this figure we can 
write for phase-a voltage as 
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Similar expressions can also be written for the other two phases. We therefore have 
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Pre-multiplying both sides of (7.34) by the transformation matrix C we get 
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Since the synchronous generator is operated to supply only balanced voltages we can assume 
that Ean0 = Ean2 = 0 and Ean1 = Ean. We can therefore modify (7.35) as 
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We can separate the terms of (7.36) as 
 

( )[ ] 0000 2 agassan IZIMLjRV −=−+−= ω              (7.37) 
 

( )[ ] 1111 aananassan IZEEIMLjRV −=+++−= ω             (7.38) 
 

( )[ ] 2222 aassan IZIMLjRV −=++−= ω              (7.39) 
 
Furthermore we have seen for a Y-connected load that Va1 = Van1, Va2 = Van2 since the neutral 
current does not affect these voltages. However Va0 = Van0 + Vn. Also we know that              
Vn = − 3ZnIa0. We can therefore rewrite (7.37) as 
 

( ) 00000 3 aanga IZIZZV −=+−=               (7.40) 
 
The sequence diagrams for a synchronous generator are shown in Fig. 7.7. 
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Fig. 7.7 Sequence circuits of synchronous generator: (a) positive, (b) negative and (c) zero sequence. 
 

7.4 SEQUENCE CIRCUITS FOR SYMMETRICAL TRANSMISSION LINE 
 

The schematic diagram of a transmission line is shown in Fig. 7.8. In this diagram the 
self impedance of the three phases are denoted by Zaa, Zbb and Zcc while that of the neutral 
wire is denoted by Znn. Let us assume that the self impedances of the conductors to be the 
same, i.e., 
 

ccbbaa ZZZ ==  
 
Since the transmission line is assumed to be symmetric, we further assume that the mutual 
inductances between the conductors are the same and so are the mutual inductances between 
the conductors and the neutral, i.e., 
 

cabcab ZZZ ==  

cnbnan ZZZ ==  
 
The directions of the currents flowing through the lines are indicated in Fig. 7.8 and the 
voltages between the different conductors are as indicated. 
 

 
 

Fig. 7.8 Lumped parameter representation of a symmetrical transmission line. 
 

Applying Kirchoff’s voltage law we get 
 

nnnaaannnaaaan VVVVVVV ′′′′′′′′ −+=++=              (7.41) 
 
Again 
 

( ) nancbabaaaaa IZIIZIZV +++=′               (7.42) 
( )cbaanannnn IIIZIZV +++=′               (7.43) 
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Substituting (7.42) and (7.43) in (7.41) we get 
 

( ) ( )( ) ( ) nnnancbanabaanaanaan IZZIIZZIZZVV −++−+−=− ′′           (7.44) 
 
Since the neutral provides a return path for the currents Ia, Ib and Ic, we can write 
 

( )cban IIII ++−=                 (7.45) 
 
Therefore substituting (7.45) in (7.44) we get the following equation for phase-a of the circuit 
 

( ) ( )( )cbannnabaannnaanaan IIZZZIZZZVV +−++−+=− ′′ 22            (7.46) 
 
Denoting 
 

annnabmannnaas ZZZZZZZ 2  Zand  2 −+=−+=  
 
(7.46) can be rewritten as 
 

( )cbmasnaan IIZIZVV ++=− ′′               (7.47) 
 

Since (7.47) does not explicitly include the neutral conductor we can define the 
voltage drop across the phase-a conductor as 
 

naanaa VVV ′′′ −=                 (7.48) 
 
Combining (7.47) and (7.48) we get 
 

( )cbmasaa IIZIZV ++=′                (7.49) 
 
Similar expression can also be written for the other two phases. We therefore get 
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Pre-multiplying both sides of (7.50) by the transformation matrix C we get 
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Now 
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Therefore from (7.51) we get 
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            (7.52) 

 
The positive, negative and zero sequence equivalent circuits of the transmission line 

are shown in Fig. 7.9 where the sequence impedances are 
 

abaams ZZZZZZ −=−== 21  

annnabaams ZZZZZZZ 63220 −++=+=  
 

 
 

Fig. 7.9 Sequence circuits of symmetrical transmission line: (a) positive, (b) negative and (c) zero sequence. 
 

7.5 SEQUENCE CIRCUITS FOR TRANSFORMERS 
 

In this section we shall discuss the sequence circuits of transformers. As we have seen 
earlier that the sequence circuits are different for Y- and ∆-connected loads, the sequence 
circuits are also different for Y and ∆ connected transformers. We shall therefore treat 
different transformer connections separately. 
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7.5.1 Y-Y Connected Transformer 
 

Fig. 7.10 shows the schematic diagram of a Y-Y connected transformer in which both 
the neutrals are grounded. The primary and secondary side quantities are denoted by 
subscripts in uppercase letters and lowercase letters respectively. The turns ratio of the 
transformer is given by α = N1:N2. 
 

 
 

Fig. 7.10 Schematic diagram of a grounded neutral Y-Y connected transformer. 
 

The voltage of phase-a of the primary side is 
 

03 ANANNANA IZVVVV +=+=  
 
Expanding VA and VAN in terms of their positive, negative and zero sequence components, the 
above equation can be rewritten as 
 

0210210 3 ANANANANAAA IZVVVVVV +++=++              (7.53) 
 
Noting that the direction of the neutral current In is opposite to that of IN, we can write an 
equation similar to that of (7.53) for the secondary side as 
 

0210210 3 ananananaaa IZVVVVVV −++=++              (7.54) 
 

Now since the turns ratio of the transformer is α = N1:N2 we can write 
 

α
α AN

an
an

AN VV
V
V

N
N

=⇒==
2

1  

AaaA IIININ α=⇒= 21  
 
Substituting in (7.54) we get 
 

( ) 0210210 31
AnANANANaaa IZVVVVVV α

α
−++=++  

 
Multiplying both sides of the above equation by α results in 
 

( ) 0
2

210210 3 AnANANANaaa IZVVVVVV αα −++=++             (7.55) 
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Finally combining (7.53) with (7.55) we get 
 

( ) ( ) 0
2

210210 3 AnNAAAaaa IZZVVVVVV αα +−++=++            (7.56) 
 

Separating out the positive, negative and zero sequence components we can write 
 

11
2

1
1 Aaa VV

N
NV ==α                 (7.57) 

22
2

1
2 Aaa VV

N
NV ==α                 (7.58) 

( )[ ] 0
2

2100
2

1
0 3 AnNAaa IZNNZVV

N
NV +−==α             (7.59) 

 

 
 

Fig. 7.11 Zero sequence equivalent circuit of grounded neutral Y-Y connected transformer. 
 
From (7.57) and (7.58) we see that the positive and negative sequence relations are the same 
as that we have used for representing transformer circuits given in Fig. 1.18. Hence the 
positive and negative sequence impedances are the same as the transformer leakage 
impedance Z. The zero sequence equivalent circuit is shown in Fig. 7.11. The total zero 
sequence impedance is given by 
 

( ) nN ZNNZZZ 2
210 33 ++=                (7.60) 

 
The zero sequence diagram of the grounded neutral Y-Y connected transformer is 

shown in Fig. 7.12 (a) in which the impedance Z0 is as given in (7.60). If both the neutrals are 
solidly grounded, i.e., Zn = ZN = 0, then Z0 is equal to Z. The single line diagram is still the 
same as that shown in Fig. 7.12 (a). If however one of the two neutrals or both neutrals are 
ungrounded, then we have either Zn = ∞ or ZN = ∞ or both. The zero sequence diagram is then 
as shown in Fig. 7.12 (b) where the value of Z0 will depend on which neutral is kept 
ungrounded. 
 

 
 

Fig. 7.12 Zero sequence diagram of (a) grounded neutral and (b) ungrounded neutral Y-Y connected 
transformer. 
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7.5.2 ∆-∆ Connected Transformer 
 

The schematic diagram of a ∆-∆ connected transformer is shown in Fig. 7.13. Now 
we have 
 

21210210 ABABBBBAAA

BAAB

VVVVVVVV
VVV

+=−−−++=
−=

            (7.61) 

 
Again 
 

ababAB VV
N
NV α==

2

1  

 

 
 

Fig. 7.13 Schematic diagram of a ∆-∆ connected transformer. 
 
Therefore from (7.61) we get 
 

( )2121 ababABABAB VVVVV +=+= α               (7.62) 
 

The sequence components of the line-to-line voltage VAB can be written in terms of 
the sequence components of the line-to-neutral voltage as 
 

°∠= 303 11 ANAB VV                 (7.63) 

°−∠= 303 22 ANAB VV                 (7.64) 
 
Therefore combining (7.62)-(7.64) we get 
 

( )°−∠+°∠=°−∠+°∠ 303303303303 2121 ananANAN VVVV α           (7.65) 
 
Hence we get 
 

2211   and  anANanAN VVVV αα ==               (7.66) 
 
Thus the positive and negative sequence equivalent circuits are represented by a series 
impedance that is equal to the leakage impedance of the transformer. Since the ∆-connected 
winding does not provide any path for the zero sequence current to flow we have 
 

000 == aA II  
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However the zero sequence current can sometimes circulate within the ∆ windings. We can 
then draw the zero sequence equivalent circuit as shown in Fig. 7.14. 
 

 
 

Fig. 7.14 Zero sequence diagram of ∆-∆ connected transformer. 
 
7.5.3 Y-∆ Connected Transformer 
 

The schematic diagram of a Y-∆ connected transformer is shown in Fig. 7.15. It is 
assumed that the Y-connected side is grounded with the impedance ZN. Even though the zero 
sequence current in the primary Y-connected side has a path to the ground, the zero sequence 
current flowing in the ∆-connected secondary winding has no path to flow in the line. Hence 
we have Ia0 = 0. However the circulating zero sequence current in the ∆ winding magnetically 
balances the zero sequence current of the primary winding. 
 

 
 

Fig. 7.15 Schematic diagram of a Y-∆ connected transformer. 
 

The voltage in phase-a of both sides of the transformer is related by 
 

ababAN VV
N
NV α==

2

1  

 
Also we know that 
 

NANA VVV +=  
 
We therefore have 
 

( ) 0210

0210210

3
3

ANababab

ANANANANAAA

IZVVV
IZVVVVVV

+++=
+++=++

α
            (7.67) 

 
Separating zero, positive and negative sequence components we can write 
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03 000 ==− abANA VIZV α                (7.68) 

°∠== 303 111 aabA VVV αα                (7.69) 

°−∠== 303 222 aabA VVV αα                (7.70) 
 
The positive sequence equivalent circuit is shown in Fig. 7.16 (a). The negative sequence 
circuit is the same as that of the positive sequence circuit except for the phase shift in the 
induced emf. This is shown in Fig. 7.16 (b). The zero sequence equivalent circuit is shown in 
Fig. 7.16 (c) where Z0 = Z + 3ZN. Note that the primary and the secondary sides are not 
connected and hence there is an open circuit between them. However since the zero sequence 
current flows through primary windings, a return path is provided through the ground. If 
however, the neutral in the primary side is not grounded, i.e., ZN = ∞, then the zero sequence 
current cannot flow in the primary side as well. The sequence diagram is then as shown in 
Fig. 7.16 (d) where Z0 = Z. 
 

 
 

Fig. 7.16 Sequence diagram of a Y-∆ connected transformer: (a) positive sequence, (b) negative sequence, (c) 
zero sequence with grounded Y-connection and (d) zero sequence with ungrounded Y-connection. 

 
7.6 SEQUENCE NETWORKS 

 
The sequence circuits developed in the previous sections are combined to form the 

sequence networks. The sequence networks for the positive, negative and zero sequences are 
formed separately by combining the sequence circuits of all the individual elements. Certain 
assumptions are made while forming the sequence networks. These are listed below. 
 

1. Apart from synchronous machines, the network is made of static elements. 
2. The voltage drop caused by the current in a particular sequence depends only on the 

impedance of that part of the network. 
3. The positive and negative sequence impedances are equal for all static circuit 

components, while the zero sequence component need not be the same as them. 
Furthermore subtransient positive and negative sequence impedances of a synchronous 
machine are equal. 

4. Voltage sources are connected to the positive sequence circuits of the rotating machines. 
5. No positive or negative sequence current flows between neutral and ground. 
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Example 7.5: Let us consider the network shown in Fig 7.17 which is essentially the 
same as that discussed in Example 1.2. The values of the various reactances are not important 
here and hence are not given in this figure. However various points of the circuit are denoted 
by the letters A to G. This has been done to identify the impedances of various circuit 
elements. For example, the leakage reactance of the transformer T1 is placed between the 
points A and B and that of transformer T2 is placed between D and E. 
 

The positive sequence network is shown in Fig. 7.18. This is essentially same as that 
shown in Fig. 1.24. The negative sequence diagram, shown in Fig. 7.19, is almost identical to 
the positive sequence diagram except that the voltage sources are absent in this circuit. The 
zero sequence network is shown in Fig. 7.20. The neutral point of generator G1 is grounded. 
Hence a path from point A to the ground is provided through the zero sequence reactance of 
the generator. The primary side of the transformer T1 is ∆-connected and hence there is 
discontinuity in the circuit after point A. Similar connections are also made for generator G2 
and transformer T2. The transmission line impedances are placed between the points B−C, 
C−D and C−F. The secondary side of transformer T3 is ungrounded and hence there is a break 
in the circuit after the point F. However the primary side of T3 is grounded and so is the 
neutral point of generator G3. Hence the zero sequence components of these two apparatus 
are connected to the ground. 
 

 
 

Fig. 7.17 Single-line diagram of a 3-machine power system. 
 

 
 

Fig. 7.18 Positive sequence network of the power system of Fig. 7.17. 
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Fig. 7.19 Negative sequence network of the power system of Fig. 7.17. 
 

 
 

Fig. 7.20 Zero sequence network of the power system of Fig. 7.17. 
∆∆∆ 


